miércoles, 17 de junio de 2015

modelos de base de datos


modelos de base de datos



Además de la clasificación por la función de las bases de datos, éstas también se pueden clasificar de acuerdo a su modelo de administración de datos.
Un modelo de datos es básicamente una "descripción" de algo conocido como contenedor de datos (algo en donde se guarda la información), así como de los métodos para almacenar y recuperar información de esos contenedores. Los modelos de datos no son cosas físicas: son abstracciones que permiten la implementación de un sistema eficiente de base de datos; por lo general se refieren a algoritmos, y conceptos matemáticos.
Algunos modelos con frecuencia utilizados en las bases de datos:
Bases de datos jerárquicas
En este modelo los datos se organizan en forma de árbol invertido (algunos dicen raíz), en donde un nodo padre de información puede tener varios hijos. El nodo que no tiene padres es llamado raíz, y a los nodos que no tienen hijos se los conoce como hojas.
Las bases de datos jerárquicas son especialmente útiles en el caso de aplicaciones que manejan un gran volumen de información y datos muy compartidos permitiendo crear estructuras estables y de gran rendimiento.
Una de las principales limitaciones de este modelo es su incapacidad de representar eficientemente la redundancia de datos.
Base de datos de red
Éste es un modelo ligeramente distinto del jerárquico; su diferencia fundamental es la modificación del concepto de nodo: se permite que un mismo nodo tenga varios padres (posibilidad no permitida en el modelo jerárquico).
Fue una gran mejora con respecto al modelo jerárquico, ya que ofrecía una solución eficiente al problema de redundancia de datos; pero, aún así, la dificultad que significa administrar la información en una base de datos de red ha significado que sea un modelo utilizado en su mayoría por programadores más que por usuarios finales.
Bases de datos transaccionales
Son bases de datos cuyo único fin es el envío y recepción de datos a grandes velocidades, estas bases son muy poco comunes y están dirigidas por lo general al entorno de análisis de calidad, datos de producción e industrial, es importante entender que su fin único es recolectar y recuperar los datos a la mayor velocidad posible, por lo tanto la redundancia y duplicación de información no es un problema como con las demás bases de datos, por lo general para poderlas aprovechar al máximo permiten algún tipo de conectividad a bases de datos relacionales.
Un ejemplo habitual de transacción es el traspaso de una cantidad de dinero entre cuentas bancarias. Normalmente se realiza mediante dos operaciones distintas, una en la que se decrementa el saldo de la cuenta origen y otra en la que incrementamos el saldo de la cuenta destino. Para garantizar la atomicidad del sistema (es decir, para que no aparezca o desaparezca dinero), las dos operaciones deben ser atómicas, es decir, el sistema debe garantizar que, bajo cualquier circunstancia (incluso una caída del sistema), el resultado final es que, o bien se han realizado las dos operaciones, o bien no se ha realizado ninguna,

Bases de datos relacionales[

Éste es el modelo utilizado en la actualidad para representar problemas reales y administrar datos dinámicamente. Tras ser postulados sus fundamentos en 1970por Edgar Frank Codd, de los laboratorios IBM en San José (California), no tardó en consolidarse como un nuevo paradigma en los modelos de base de datos. Su idea fundamental es el uso de "relaciones". Estas relaciones podrían considerarse en forma lógica como conjuntos de datos llamados "tuplas". Pese a que ésta es la teoría de las bases de datos relacionales creadas por Codd, la mayoría de las veces se conceptualiza de una manera más fácil de imaginar. Esto es pensando en cada relación como si fuese una tabla que está compuesta por registros (las filas de una tabla), que representarían las tuplas, y campos (las columnas de una tabla).
En este modelo, el lugar y la forma en que se almacenen los datos no tienen relevancia (a diferencia de otros modelos como el jerárquico y el de red). Esto tiene la considerable ventaja de que es más fácil de entender y de utilizar para un usuario esporádico de la base de datos. La información puede ser recuperada o almacenada mediante "consultas" que ofrecen una amplia flexibilidad y poder para administrar la información.
El lenguaje más habitual para construir las consultas a bases de datos relacionales es SQLStructured Query Language o Lenguaje Estructurado de Consultas, un estándar implementado por los principales motores o sistemas de gestión de bases de datos relacionales.
Durante su diseño, una base de datos relacional pasa por un proceso al que se le conoce como normalización de una base de datos.
Bases de datos multidimensionales
Son bases de datos ideadas para desarrollar aplicaciones muy concretas, como creación de Cubos OLAP. Básicamente no se diferencian demasiado de las bases de datos relacionales (una tabla en una base de datos relacional podría serlo también en una base de datos multidimensional), la diferencia está más bien a nivel conceptual; en las bases de datos multidimensionales los campos o atributos de una tabla pueden ser de dos tipos, o bien representan dimensiones de la tabla, o bien representan métricas que se desean aprender.
Bases de datos orientadas a objetos
Este modelo, bastante reciente, y propio de los modelos informáticos orientados a objetos, trata de almacenar en la base de datos los objetos completos (estado y comportamiento).
Una base de datos orientada a objetos es una base de datos que incorpora todos los conceptos importantes del paradigma de objetos:
·         Encapsulación - Propiedad que permite ocultar la información al resto de los objetos, impidiendo así accesos incorrectos o conflictos.
·         Herencia - Propiedad a través de la cual los objetos heredan comportamiento dentro de una jerarquía de clases.
·         Polimorfismo - Propiedad de una operación mediante la cual puede ser aplicada a distintos tipos de objetos.
En bases de datos orientadas a objetos, los usuarios pueden definir operaciones sobre los datos como parte de la definición de la base de datos. Una operación (llamada función) se especifica en dos partes. La interfaz (o signatura) de una operación incluye el nombre de la operación y los tipos de datos de sus argumentos (o parámetros). La implementación (o método) de la operación se especifica separadamente y puede modificarse sin afectar la interfaz. Los programas de aplicación de los usuarios pueden operar sobre los datos invocando a dichas operaciones a través de sus nombres y argumentos, sea cual sea la forma en la que se han implementado. Esto podría denominarse independencia entre programas y operaciones.
SQL:2003, es el estándar de SQL92 ampliado, soporta los conceptos orientados a objetos y mantiene la compatibilidad con SQL92.
Bases de datos documentales
Permiten la indexación a texto completo, y en líneas generales realizar búsquedas más potentes. Tesaurus es un sistema de índices optimizado para este tipo de bases de datos.
Bases de datos deductivas
Un sistema de base de datos deductiva, es un sistema de base de datos pero con la diferencia de que permite hacer deducciones a través de inferencias. Se basa principalmente en reglas y hechos que son almacenados en la base de datos. Las bases de datos deductivas son también llamadas bases de datos lógicas, a raíz de que se basa en lógica matemática. Este tipo de base de datos surge debido a las limitaciones de la Base de Datos Relacional de responder a consultas recursivas y de deducir relaciones indirectas de los datos almacenados en la base de datos.
por: prieto calcina vivian sarahi

No hay comentarios:

Publicar un comentario